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The two-dimensional boundary layer equations for a class of nowNewtonian fluids, for 
which the apparent viscosity can be expressed as a polynomial in the second scalar 
invariant of the rate of strain tensor, have been derived. These equations have been 
employed to analyse the flow near a stagnation point over a stationary impermeable 
wall. The non-Newtonian effects on the boundary layer velocity profile and the wall skin 
friction have been studied, and compared with the corresponding Newtonian fluid. 
The fluid velocity in the boundary layer has been shown to be retarded by the non- 
Newtonian effect while the skin friction increases proportionate to it. 

Keywords: Non-Newtonian fluid; two-dimensional flow; stagnation point; boundary 
layer; skin friction 

1. INTRODUCTION 

As is known, the extent to which the non-Newtonian properties of the 
fluids influence the flow features in various applications in chemical, 
biochemical and mineral processing industries vanes from one 
application to another. To a large measure, this depends on the way 
the apparent viscosity of the fluid varies with the shear rate. For 
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96 N. C. SACHETI et ul. 

instance, fluids are encountered in applications for which the apparent 
viscosity may decrease or increase with increasing shear rate. Our 
interest in this note is to investigate the non-Newtonian effects on the 
stagnation point flow when the viscosity increases with shear rate 
which may occur, for example, in processing of highly concentrated 
suspensions or pastes [l -31. A possible constitutive equation of such a 
fluid can be represented as [4] 

where ZI, Z2, and 4 are the scalar invariants of the rate of strain tensor. 
For two-dimensional flows, ZI and 1 3  are identically equal to zero; 
therefore, p = p(Z2). We further assume [5 ]  that p(Z2) can be expressed 
as a polynomial in 12: 

which exhibits a kind of shear thickening dilatant behaviour. In this 
work, we restrict ourselves up to the first order term in 12 in the 
expansion of p. Thus, we write 

where is the conventional Newtonian viscosity coefficient and 
p1 (> 0) is a parameter characterising the non-Newtonian behaviour 
of the fluid. 

It is worth mentioning here that although flow analyses of non- 
Newtonian fluids using different constitutive equations have been 
extensively reported in literature, little attention has been paid to the 
dynamics of fluid models described by the constitutive Eq. (2). As 
the visco-plastic models have been found not to sufficiently explain the 
behaviour of certain fluids such as concentrated suspensions, the 
analyses of models described by Eq. (2) are of interest. Thus the present 
work is undertaken in order to study the boundary layer flow of the 
non-Newtonian fluid model given by Eq. (3) near a two-dimensional 
stagnation point over a stationary wall. The governing equations have 
been reduced to a non-linear differential equation of third order using 
suitable transformations. The resulting two-point boundary value 
problem has been solved numerically using a shooting method. 
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NON-NEWTONIAN FLUID FLOW 97 

2. GOVERNING EQUATIONS AND THEIR SOLUTION 

We consider the steady, laminar flow of the non-Newtonian fluid with 
velocity components u = u(x, y) and v = v(x,y)  near a two-dimen- 
sional stagnation point over a solid boundary at y = 0. Transforming 
the tensor components T~ into physical components in Cartesian 
coordinates and using the two-dimensional equations of conservation 
of mass and momentum, the boundary layer equations based on the 
usual order of magnitude approach can be derived in the form 

where p is the pressure, U the mainstream velocity, u = Po/@, A = pl /p  
and e is the density. The boundary conditions for the velocity field are 

u = O ,  v = O  a t y = O  
u + U as y -+ 00. 

(7) 

In order to solve the boundary layer Eqs.(4)-(6) subject to the 
conditions (7), we let 

It can be verified that the continuity equation is automatically satisfied 
by +. The velocity components u and v now become 

u = Uf’(Q), v = -(uul)1/2f(q). (9) 
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98 N. C. SACHETI el al. 

Using the expressions in Eqs. (8) and (9) in Eq. (9, we obtain the 
differential equation 

f’ / /+Jy’ - ( f / ) 2  + 1 + px*2(f”)2f”’  = 0 (10) 

where x* = x / L ,  L a characteristic length scale and p = (3AUiL2)/$ 
is the parameter characterising the ratio of the nowNewtonian effect 
to the Newtonian viscous effect. In Eq.(10), the primes denote 
differentiation with respect to q. The transformed boundary conditions 
are 

f ( 0 )  = 0, f’(0) = 0, f’(oo) = 1. (11) 

In the following, we shall assume that x* is a parameter, rather thanan 
independent variable. In other words, we shall seek local similarity 
solution of Eq. (10) corresponding to small values of the parameter 
c (= x**) near the stagnation point. Equations (10) and (1 1) thus 
describe a well-posed boundary value problem. This may be 
contrasted with similar studies in visco-elastic fluids [7-91 in which 
the corresponding velocity functions were shown to be governed by 
equations whose orders did not match the number of physical 
boundary conditions. However, they overcame this difficulty by 
resorting to a perturbation technique and reducing the governing 
non-linear equations into systems of equations in each of which the 
order of equation matched the number of boundary conditions. When 
p = 0, Eq. (10) reduces to the well-known equation for viscous fluids. 

Equation (10) with the boundary conditions (1 1) can be solved using 
shooting method provided an estimate for f”(0) is available. The 
accuracy and the convergence rate of the resulting solution will depend 
on the accuracy of this estimate. In order to generate an acceptable 
initial guess for f”(O), we first consider a perturbation solution of 
Eq. (10) with respect to the parameter p, assumed small. To this end, 
we write 

Using Eq. (12) in Eq. (lo), and collecting terms of equal orders in 
p, we get a set of ordinary differential equations governing fn, 
(n = 0, 1,2,. . .). The order of terms to be considered in the perturbed 
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NON-NEWTONIAN FLUID FLOW 99 

quantities depends on the accuracy desired. Sarpkaya and Rainey [7] 
have shown that more accurate results can be obtained by taking 
higher order terms. In this work we have taken terms up to and 
including the second order. The functionfo ( r ] )  is governed by the non- 
linear equation 

subject to 

The equations governing the higher order functions can be written in 
the matrix form 

a X = b  

where 

a = (1 fo -2fb f;), x = (FIII F’I F’ F ) ~ ,  
F =  (fi f 2  f3 . . .), b = (KI K2 K3 . . .) 

and K1, K2, . . . are known functions. The boundary conditions for 
Eq. (14) are 

f ( 0 )  =fp) =fk(..) = 0 ,  (n 2 1). (14a) 

As noted before, we have considered the effects of terms up to p2. 
Besides Eq. (1 3), other equations and their boundary conditions in 
this case can be expressed in the explicit forms 

15) 

( 5a) 

11 2 111 fy +fof:: - 2fbf’, +fb’fl = -4So) f o  

fi(0) =f#) = f i ( 4  = 0 

f ~ + f o f ~ - 2 f b f ’ 2 + f b ’ f 2 = ( f ~ ) 2  -.#-If: -c{(fo) fl + 2 f o f o f d  

f2(0) = f ’ 2 ( O )  =f’2(4 = 0. 

II 2 Ill I1 Ill II 

(16) 

(16a) 
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100 N. C. SACHETI et al. 

In many applications, the prediction of the effect of the non- 
Newtonian parameter on the local wall shear stress is of importance. 
For the model considered here, the non-dimensional skin friction 
coefficient T is given by 

7 =  (Txy)y=o = c1I2 If”(0) + jp~{f’(0)}3]. 1 (17) 
@ L U ’ / 2  uy2 

When = 0, Eq. (17) yields the skin friction for the corresponding 
Newtonian case [6]. 

In order to obtain the velocity profiles, Eqs. (13), (15) and (16) were 
first integrated numerically using a shooting method. The approximate 
solutions so obtained were used to solve the original Eq. (10). The 
improved value of f”(0) obtained from the perturbation method was 
seen to accelerate the convergence of the solution to Eq.(10). The 
double precision arithmetic was used in the computations. For 
graphing purposes, the computed results were seen to be insensitive 
to moderate integration step sizes; however, for tabulated values, a 
step length of Aq = 0,001 was used. The results obtained correspond 
to the value of c equal to 0.5. 

3. RESULTS 

The velocity distribution in the boundary layer is shown in Figure 1. 
The curve for /3 equals to zero corresponds to the Newtonian profile. 
The velocity tends to decrease as p is increased. This shows that the 
non-Newtonian effect of the type considered herein retards the fluid 
motion. The non-Newtonian effect is more pronounced at some 
distance from the wall before velocity profiles eventually merge 
smoothly with the corresponding Newtonian flow. For small values 
of p, the boundary layer thickness has almost a constant profile. 
Moreover, the results here do not show the overshooting phenomenon 
observed in visco-elastic fluids [8, 91. 

The values of the coefficient of skin friction T at the boundary have 
been tabulated for a range of values of the non-Newtonian param- 
eter p (see Tab.1). In this table, T, denotes the skin friction coeffi- 
cient calculated from the solution of Eq.(lO) while T, denotes the 
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FIGURE 1 Velocity distribution in the boundary layer. 

TABLE I Skin friction r 

P 7, 7, 

0.0 
0.1 
0.2 
0.3 
0.4  
0.5 
0.6 
0.7 
0.8 
0 .9  

0.8716 
0.8771 
0.8824 
0.8875 
0.8923 
0.8969 
0.9014 
0.9057 
0.9099 
0.9140 

0.8716 
0.8772 
0.8831 
0.8899 
0.8979 
0.9077 
0.9196 
0.9341 
0.9516 
0.9726 

corresponding values obtained using the perturbed solution. The stress 
at the wall shows increasing trend with increase in the parameter p. As 
should be expected, the difference between the values of T, and T, is 
negligible for small p; however, as /3 is increased, the error in r, 
increases in comparison with T,. Regarding the perturbation solution, 
it is worth mentioning here that the sum of zeroth and first order terms 
in the perturbation analysis did not yield stress behaviour at the 
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102 N. C. SACHETI et al. 

boundary comparable with the exact numerical solution. However, on 
taking the next higher order term, T, showed increasing pattern with 
increase in the non-Newtonian effect. The values of T, shown in Table I 
correspond to this case. The study thus suggests that neglect of the 
higher order terms in a perturbation method may not always yield the 
correct results, as was also reported earlier in a related work [7]. 
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